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The problem is solved of defining in the phase space a set of initial states from 

which a linear stationary system can be brought to the origin. The case is con- 
sidered when the magnitude, linear momentum, and energy of the control are 

simultaneously constrained, as well as the case when its linear momentum and 

energy are simultaneously constrained. 

1. Statrmant of the problem. We consider a controllable system described 
by a linear matrix difYarentia1 equation with real constant coefficients 

dxldt = Ax + Bu (I.11 

Here x = 11 x1 11, A = 11 aij 11, B = 11 bi, 11, u = 11 u, 11 are matrices of order 
In X l), (n X n), (n X r), (r X 1) , respectively. By b, we denote the 8th 
column of matrixbr (b, # 0 for all s = 1, . . . . r). AS admissible controls we take 

measurable functions US (t) (a = 1, . .., r), satisfying simultaneously the three inequal- 
ities 

Il.&,(t) 14 M, (MS = coast > 0) (W 

a0 , 

1 124, (d) I oh ,( iv8 (N, = const > 0) (1.3) 
0 

30 

s uaa (7) dz & P, (P, = const >O) (1.4) 
0 

From the physical point of view conditions (1.2). (1.3) and (1.4) specify the bounded- 
ness of the magnitude, the linear momentum and the energy of the contml, respectively. 
The general solution of system (1.1) has the form 

x(t) = eAfxO + j eA+)Bu (7) ah (1.5) 
0 

where x0 is the initial state vector. 
We pose the problem of defining in the phase space x a set Q (the region of control- 

lability) of states 20 for each of which there exists an admissible control bringing the 
system to the origin, The probbm of determining the controllability region Q is con- 

sidered also for the case when the admissible conuof are functions satisfying simultan- 
eously only the two integral constraints (1.3). (1.4). 

In [l-3] the problem we have posed was solved with r = 1 for the cases when controls 

satisfying conditions (1.2) or (1.3) (1.4) were admissible. The problem was solved 
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in 14, 53 for the case when constraints (1.2) and (1.3) were imposed simultaneously on 
the control, and in [6] for the case when constrain0 (1.2) and (1.4) were imposed. 

Let us assume that under a certain admissible control the equality z (t) = 0 holds 

for i = II’ then from (1.5) we have 

T 

s f T 
- x0 = e-A*Bu (z) dz = 2s frA’b#zJu, (z) dz 

0 r-=1 0 

(1.6) 

The admissible control under which equality (1.6) is realized, satisfies the conditions 
T 

1 ‘Iu,(z)jdzaL (f-7) 
0 

T 

(1.8) 

The set of controls U, (t) simultaneously satisfying inequalities (1.2). (1.7) and (1.8) is 
denoted S’Jf (T), while the one for which the con&s satisfy simultaneously the inequal- 

ities (1.7) and (1.8) is denoted Qf (T). The set of vector-valued functions u (t) such 
that U, (t) E $2: (2’) ( m = 1, 2) ,is denoted 62*( 2’). The desired controllability 
regions are denoted Q’ and Qa , respectively. The pro&m posed can be restated as 
follows: determine the set Q”‘ of vectors zo for each of which there exists T such that 

equality (1.6) can be ensured by means of a function U (t) E 62” (r) (m = 1, 2). 

2,. Region, of rttrinrbil!ty, We introduce the notation 

v,(T)= j e-A7b,u, (z) dz, u (T) = 2 v,(T) = j eA’Bu (t) dr (2.1) 
0 6-1 0 

and in the space x we consider the attainability regions 

Q: (T) = k, (T): us (4 E Q? (TN 

Q”(T) = 2 QF (T) = {v(T): u (t) E Q”(T)) 
0-1 

The attainabiliq regions Q,” (T) (S = 1, . . . , r; m = I,_ 2) and Q” (T) possess the 
following properties: 1. Closedness. 2. Convexity. 3. Qr (T, “grows” with the in- 
crease of T, i.e., Qi” (TJ c QT (i’s) if Tl < T,. 4. Symmetry about the origin. 

By using the weak compactriGs in irself of a sphere in the space LJO, !I”j [7], we can 
prove the weak compactness in themselves of the sets nr( T) (m = i J). Property 1 foll- 
ows from the fact that the set Qr (2’) is a linear mapping of the set SZr (T) . Properties 

2. 3, 4 follow easily from a-6. 8. 91. 

The relations Qi (I’) c Q7 (T), Qi c &Lnd Q’ C Qshold because a:( T)c 
caf (T) . From the definition of the set Q,” (T) it follows that the system 

dxldt = Ax -/- b,u, (2.2) 

can be brought to the origin in time T if and only if its initial state 50 E QI” iT).ln 
view of Property 3 the controllability region Qr of system (2.2) is a set of points of 
space x 9 which includes Qr (T) as T * 30. The controllability region Q” of system 
(1.1) is obtained as the algebraic sum of the regions Qr (s = 1, , . ., T): 
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therefore, we shall first consider the problem 
of constructing the controllability region Qr 
of system (2.2). 

We take an arbitrary unit (1 X fit-vector q 
and we construct the support hyperpianes of set 
Q,” (T), orthogonal to vector q, From Prop- 
erties 2 and 4 it follows that there are two such 
planes and they are symmetric to each other 

Fig. 1. 

by the expression [lo] 

relative to the origin (Fig. I)* The distance 
&J (T) from th e origin to these planes is given 

From Praperties 1 and 2 it follows that to the set 0: (T) belong those and only those 
points t whose coordinates satMy the inequality 

I qz I G 4 (T) 

for all possible unit vectors q, 

3. Petarmfnrtion of distance &,(T) foi rho contzol clrtr S:(Z’p). 
We solve the problem of maximizing the functional 

with the controls u, (t) E Qf (T). If qe-“b, = con&, then for sufficiently large values 
of T the maximizing function both in the class jai (2’) as well as in the class Eni (2’) 
is, obviously. the function u*(t) = N,T-* sgn (qe’Atb,) which turns, of the three re- 
lations (X.2), (1.7). (1.8). only the relation (1.7) into an equality. Further, we take 
it that ~frA%, z#z cons& 

Let % 0) be the control solving the problem of maximi~ng integral (3.1) under the 
constraintlr (3.2) and (1.7). It follows f?om [“rj that when 2’ > NJM, the control u, (f) 
equals M, on some set of measure N,IM, and equals zero on the complement of this set 
with respect to the whole segment 10, TLThe integral 

T 

f 
a** (7) d? 

0 

after this control has been substituted in it, yields for 2’ > N./M, an eXpreSSiOn for 

WV,. If i&N, < PI,then the control u,(t) e ~3: (QConsequently. under the condition 
M&S *;; PI the problem of maximizing inKgxal(3.1) in the control class q( 2’) is redu- 
ced to the maximizing problem in the presence of only the two conditions (1.2) and (1.7) 
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which was examined in 141. 
In what follows we assume that 

AfaN, > P, (3.2) 

Now let u,(t) be the control maximizing functional (3.1) under constraints (1.2), (1.8). 
Two cases are possible: the control U,(t) does not satisfy inequality (1.7) (Case A), the 

control u&t) satisfies inequality (1.7) (Case B). We first consider Case A. In order to 
solve the problem of maximizing integral (3.1) we consider the auxiliary functional 

T 

” I,(% Xc 0) = 
J[ 

?p?-A%&, (z) - x 1 u, (z) 1 - =+ US2 (r)] dt (3.3) 
0 

Here x >O,a > 0 are constant Lagrange multipliers. In order to maximize integral 
(3.3) under condition (1.2) we need to find a function 1 us(t) 1 < fi, which maximizes 

the integrand. Obviously, such a function has the form 

i 

M, Sgn (V-A%), tEE,(T, xv 4) 

u, P, XV 6) = 6-l [I rle-7, I - xl WJ w-%)9 t E F, (T, x, 0) (3.4) 

, tH.W’, xl 

E, (T, x, 0) I= {t E lo, Tl : I qcAfbs I> x + 5hf,: 

F, (T, x, G) = (t E lo, Tl : xc IV-~% I Gx -+ aMa1 (3.51) 

WY x) = it E [O, Tl : 1 wAfh I <XI 

(4 (T, x, 4 + F,(T, x, 4 + G,(T, cr.) = lo, Tl) 

We substitute function (3.4) into relations (1.7) and(l.8)and we show that in Case A 
there exist values of x > 0 and Q > 0 for which these relations turn into equalitiii. 

After the substitution we obtain the following equations in the variables Xt Q: 

Q~,(X,C)“M61’E‘(T,X,G)+ + { [I T+%, ) - x] dz = A’, (3.6) 
F, (T, x. ~1 

@s (x, 6) = MAE, CT, x9 4 + f 1 [ 1 7je-A7b, I - X]*dz = P, (3.7) 
F, (T, X. 0) 

where pE,(T, X, 0) is the kbesgue measure [ll] of the set E, (T, x, 0). 
The functions @, (x, a) and Qt (x, o, are continuous. We consider these functions 

only in the first quadrant (x ) U, fl> 0) of the ( x, o)-plane. As x - 0 and o - 0 
we have @I (% (I)- MI?‘, @, (XGJ~ - M,‘T. The inequalities M,T > NB and eT> 

> PI hold for values of 2’ larger than a’ certain value. For each fixed value of u t6e 
functions a1 (x, o) and @, (x, u) decrease strictly monotonically as X varies from zero 
to the value 

x’ = tETyT, (WA’ b,) (3.8) 

WhenX= X’, obviously, a1 (~,a) E Cp, (x, o) E 0. For each fixed value of x < x’ 
the functions 9, (~,a) and @a (x,oI decrease motiotonically as o increases. 



From all that we have said above it folk~s that Eqs, (3,6) and (3_ 7) defstnt?, in the 
first Quadtant of the f 2so pplane, EBrves whose er&lpoWs lie on the axes x = O and 

0 tj= 0. Each of theses curves is continuous, has 
oniy one branch, and does not fnte~~ct itself. 
Each of these curvy 1s monotonic, I, 8. t if two 
polt.~t~(~@‘~ 0? md (x*‘, .(*a)) on the curve 

ill*3 sucfr t&a% ~~~~~~~~ then o@J < 0W Let us 
aSWaB t&e relative locations of the points of 
lnt$tW.Xlon of CWWM (3.6) and ($7) with the 
axes x = 0 and CI m 0. Let the potna of inter- 
section of curve (3, tj) with the axes u = 0 
and It- @ have the eates {x@~~ O) and 
CO, o a$) respe@&y, while the potits of inter- 

sectl01~ of curve (h 7) have the cwrd$nates 
(%@‘I 0) and (0, a@*). In other words, 
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4 (T) > l+f,2sQlrE, CT, x0, 5’) + $ \ [ 1 qeeArb, 1 - X”]s dr = LS’P, (3.11 
F, (T.‘X”. C’) 

The inequalities 

max (x”lV,, s”PJ <d, (T) sg fN, (3.12) 

follow from relations (3. lo), (3.11). and also from the expressions (1.7). (3.1) and 
(3.8). The first inequality in (3.12) holds, obviously, for both the control Classes 
sz? (T) (m = 1, 2). 

Note that expression (3.4) makes it possible to predetermine the structure of the con- 
trol, constrained by conditions (1.2), (1.3) (1.4). bringing system (1.1) to the origin 
in the shortest possible time. 

Now let Case B obtain. The maximizing control is determined by the expression 
U, (t, 0, U@)). The distance c&,(T) is obtained [S] from formula (3.9) if in it we 
set x” = 0, o* = a@). 

4, Structure of the conttollabfllty region: Qf and Q1 . ktthe 
roots hk = ek i- 8% with multiplicities Pk of the characteristic equation 

det 11 A -XE/J=O (4.1) 

have positive real parts for k I=: 1, . . . . tl ,z ro real parts for k = r, + 1, . . . . ra 
and negative real parts for k = rs + 1, . ..) rs . As follows, for example, from 
[13. 141, the matrix e-*’ has the form 

r, PI+ 

where akt are constant matrices with the elements & . The expression for tlcA’ b, 
has the form 

(4.2) 

Consider the system of linear algebraic equations (in the components of Vector q) 

VzkI b, = 0 (l=f,..., Pk-- for k=rl+i,..., rz) 

(l=o,i..., Pk 

This system consists of 
-1 for k=rs+i,..., ra) 

(4.8) 

P = $ Px- P2 - rl) 
k=r,+l 

equations. To Eqs. (4.3) we add on the norming condition 
n 

2 rliz = 1 
i=l 

(4.4) 
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The vectors tl which are the solutions of Eqs. (4.3), (4.4) (we denote them $>, and 
only they, when substituted in (4.2) annihilate all the terms containing eaCk’ (,Q = 

= rs + 1, . . . . 
taining t’, where 

us), where 8,s < 0, and the teims not containing exponents but con- 

1 > 1. Thus the function 1 INS emAr 6, I remains bounded as t --f 
--t oo.Consequently, as 1’ + co the quantity X’ in (3.8) tends to a finite limit. 
Since d, (1’) is a nondecreasing function of T, it follows from the right-hand inequality 
in (3.12) that &I (T) tends to a finite limit as T-t M which we denote d,i (&, = 

= d_,,I. If ,I$ is a vector such that &,I -+ 0, then the set QJ’ is included, between 
the planes 

$2 = a,“,, -Tj;x = dn. 
s 

(4.5) 

For those vectors vi for which d,“, (T) < &,i for any finite T, the set Q: (T) reach- 
es the planes (4.5) only as T --t 30 and the coordinates of the points 2 F Qi satisfy 
the strict inequality 

I (xi <dn; (4.6) 

If T$ is, for example, a vector such that 11; e-. It b, z convt =+ 0, then, there exists 
a value T’ for which d,,: (T) z d,: (T’) = d,: for all 2’ > T’. For such a vector t$! 

the set Q: (T) reaches planes (4.5) at T = T' *and.. for all subsequent increases of 
Ti does not “expand” any more in the direction of 111. Consequently, for this vector 

r~: on the planes (4.5) there exist points belonging to set Q:.From what has been said 
we conclude that there exist vectors IJ~ such that the coordinates of the points of set 

Qf satisfy the inequality 

I rl;r I < d,. (L-i, 

For those and only those vectors ~1 satisfying the system of !z. algebraic equations 

77x19s = 0 (k = 1, . . .( rs: I = 0, 1. . ., pi; - !) (/t.8) 

it is obvious that qi,~-A!b, s 0 and d,,* i T) z d,* = 0. System (4.3) is a special 

case of system (4.8). Let PS be the rakk of systeA (4.8), then the fundamental system 

of solutions of Eqs. (4.8) consists of IL - PS vectors. Let us normalize each of these 

vectors and denote them t$, . . . . ~:;I.‘J. Then the set (zi belongs to the planes 

r/ix = 0 (6 = 1, . . ., n - p,) (4.9) 

i.e., the dimension of set Q: equals ps. Note that the dimension of set o’, equals 

[l, 151 the rank of the matrix IV, = [I b,, db,, . . . . A”-‘lb, 11; when ins = II system (2.2) 
is completely controllable in Kalman’s sense. 

Now let tl # qS”. We prove that here d, (T) --t 00 as T - CO. Let us assume at 

first that Case A holds for all values of T larger than some value. Then, the distance 

d, (T) satisfies inequality (3.12). We show that the quantity mas (x’, u”), being .a 

function of variable T: does not remain bounded as 2 - 0;. Let us assume the contrary, 

i.e., let us admit the presence of a constant c > 0 such that mas (Z”, n”) < c for all 
values of T. The left-hand side o’f equality (3.6) can be bound as follows: 

@1(x; 02 MSuLE, (T, c. c) (A .lO) 
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From expression (4.2) follows the relation 

where I.+‘;‘?“ is the term having, as t - DJ the maximal order of growth in comparison 

with the other terms of form e-‘t’$ occurring in expression (4.2); fl (t) f ‘0 is an almost 
periodic function, being the sum of a finite number of sinusoids and a constant; fz tt) - 

- U as t - h From the condition n # nt it follows that - eh, 2 U and at least one of 

the inequalities is fulfilled: - Fkt > U, 1’ > U. Consequently, if 1) # Q, eWEk”ti 4 00 

as t - CO. As follows from [lS], the relation 

(4.11) 

holds for the almost periodic function 1 II(t) 1 .Using relation (4.11) it is not difficult to 
show that p,Ys (T, c, c) -+ CC as T +m. From inequality (4.10) we conclude that the left- 
hand side of relation (3.6) is an unbounded function as IT 4 m. Therefore, from the 

assumption that max (x0, 0 “) f L it follows that equality (3.6) cannot hold for sufficiently 

large values of I’, but this contradicts what was presented above. Since the distance 

d$ (T) is a monotonically increasing function of T, then from inequality (3.12) it foll- 
ows that in Case A. d, ( 3’) --. co as T -f m. If Case B holds for all values of T larger 

than some value, then, in accordance with [S], d,, (T) - m as T -c m. Let us assume 

that the intervals of values of 1’ in which Cases A and B hold, alternate. Since the 

distance d, (1’) is a nondecreasing function of T, we can conclude again that d,, (1’) + 
-cc asY'-+m. Thus, the set Qfi’ is bounded only in the directions of q = qf. 

The Eqs. (4.3) (4.8). (4.9) and the inequalities (4.6). (4.7) obtained allow us to 
ascertain completely the structure of the controllability region @i. Let Xp’ denote the 

set of points t satisfying conditions (4.9); if ps = n, the? x*a = X. By X’,l we 

denote the subspace of space X”, SDanned by thevectors tj, 

~lt (13 = I. . . . . n - p,), and by X2” 
ortnogonal to the vectors 

space X,‘” 
we denote tie orthogonal complement of the sub- 

with respect to the space X” ..Thus, the following theorem holds. 
Theorem 4.1. The controllability region Q: is a cylindrical set, i.e., 0: = 

= 5’ -I- X2y*, where S ~7 X,” is a bounded set (the base of the cylinder). When 
pS = n the dimension of the subspace Xi” equals the dimension of the fundamental 

system of solutions of Eqs. (4.3), 
t, 

& + (r2 - r1) 
k=l 

i. e., to the number of eigenvalues of matrix A with positive real parts, with due regard 
to their multiplicities, and with zero real parts, without regard to their multiplicities. 

On the boundary of set Q: there are points both belonging to region Q: as well as not 

belonging to it. 
Under the condition pI = n we consider two special cases: 

1. All roots of Eq. (4.1) have negative real parts. In this case system (4.3) coincides 
with system (4.8) which, for 9, = n , has only a trivial solution, Consequently, the 
quantiqd,(T)+mas T-+rn for all t7 # 0 , and hence, Q,i = x’. 

2. All roots of Eq. (4.1) except A,, have negative real parts. The root 1\, is either 
a zero root of arbitrary multiplicity PI or is a real positive roots of multiplicity p1 = 1.. 
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In this case system (4.3) consists of n - 1 lineady independent equations. Equations 
(4.3) (4.4) have only two solutions, differing from each other in sign; 71,” and .._. n,“. 
The region 0,” is the set of points x E X, hxmded w nuo planes orthogonal to the vec- 
tor $ and looated at a distance d-i from the arig& In the cases when .si = 0 or 
so > 0, -but N, and l/Y, are sufficiently small quantities, there are points belonging 

to set i$ on the bounding planes. 
We now consider the question of the structure of region Qs. The matrices =kl (I = 

=0,1 t . . ..Pk- 4) COntsln Pk linearly independent columns 113. M], while among the 
columns of matrices ukz (1: = 1, . . . . pk - 1) there are no more than ok - 1 one%. There- 
fore, the CO~U~llS of okl& (1 =V, 1, ..*, pk - 1; s = 1, ._.( r> being linear combinations 
of the oolumns of matrices xkl @=%i, %-%? Fk-$)t contain no more than Fk linearly in- 
depndent. while the columns of o&(2 = i,,.. Pk - 1; s = i, . . . . r)contain no more 
than Pk - 1 ones. Hence it follows that in the system obtained from (4.3) for s = 
=-1 t --r r’r there are no more than 0 line&y independent ones among the r#j equations, 
I.et P denote the rank of the system of w equations obtained from (4.8) for s = 1,.. r. 
Then, among the vectors$ (6 = 17 **a+ n - Psf 8'1, . . . . r) ) n - p vectors are linearly 
independent, i. e., the set ~1 belongs ton - p planes of the form (4.9). .Note that the 
dimension of ser 0’ equals the rank of the matrix 11 WI* . . . . W, ji fl. 151; when p = 
= R system &I) is completely controllable in MaIman’s sense. 

It is e_asy to show that when p = n In system (4.3) (s = 19 ..*t p, there are no less 

than 2 P& I&early independent equations (recall that when ps = n we can assert 

that th&?are precisely B linearly independent equations in system ($3)). By X” we 
denote the set of points 4 satisfying conditions (4.9) for all s = 1, ,. ., T . By Xl: 
we denote the subspace of space Xp. spanned by the vectors $ (s = 1) . . _) r) orthog - 
onal to the vectors $ (8 = 4, *.., R - ps; 4 = 1, .**, f), and by Xs’ we denote 
the orthogonal complement of s&pace X”, with respect to space Xp s The following 
theorem holds. 

Theorem 4.2, The ~on~o~b~~~ region Q1 it a cyilndrieai set, i.e, , Or = 
= 8 + x,‘, where s c X; is a bounded set (the base of the cylinder). When p = 
=R the dimension of subspace XT, equal to the dimension of the fundamental system 
of solutions of Eqs. (4.3) (Y = I,..* rJ, is not less than 

iP, +- Crz - r,J 
Jr=1 

and not more than 

%% 
X==t 

On the boundary of set Q’ there are points both belonging to region Qr as well ,%s not 
belonging to it, 

I* Structwa of rsglont Q”, rnd Q2. , Since Q:(T) 3 G$(T), the dista- 
nce dfl (T) for the control class G?: (T) is not less than the corresponding distance for 
class Q”, (T). In the preceding section we proved for &ass Qi (T) that d,(T) --j, 00 
as T -r 00, if rI # <. Consequently, this fact hoIds also for the control c&s 
Sai (T). From the right-hand inequality in (3.12) it follows that for q 5: r,I the 
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distance dr (r) remains hounded as T --f oo both for the class Q: (T) as well as 
for the class 62: (T).Thus, the very same theorems hold for the controllability regions 
@ and Q* as do for the regions Q: and @. As follows from Theorem 4.1 and from 

p. 43, the structure of the controllability region Q”; (m = 1, Z) in the cases being 
considered here coincides with the structure of the controllability region when the cont- 
rol’s linear momentum (1.3) is bounded or when the control’s magnitude (1.2) and linear 
momentum (1.3) are bounded simultaneously. 

The inference on the structure of the controllability region 0,” could, of course, have 
been made directly, by solving the problem of maximizing integral (3.1) in the control 
class fl2: (2’). Here the control W) E Q: (T) maximizing integral (3.3) has the form 

In the case analogous to Case A the equations determining the values x0 and a” acquire 
the form 

1 
d s (I WA’ b, 

EJT. x. 0) 
I-W-N,, f 

E, ( I [I WA’ b, I- xl2 dr = Pi 

. x.0) 

In this case the distance d, (2’) is determined by the formula 

d,,(T) = $ s t WA’ b, I (I WA’ b, I- x0) dr 
E&T. X-s o) 

6. E xa m p 1s. Consider the system of equations 

=1 
l - 
---a, cQ,'= w-t 4~8 + 4~~ ~8' = aa + atw + bau VW 

Equations (6.1) descrfbe the motion of a winged aircraft in a horizontal plane (21 and 
z, are the heading and angle of side slip). The index s is dropped because there is 

only one control in system (6.1). The characteristic equation of system (6.1) has one 
zero root; let the other two roots be real, simple (therefore, we drop the index 1 also), 
and negative, so that & = 0, & < 0, As < 0. The maMx eAf has the form 

f $. s) + ,.#,¶~&t + ap)ebt $a' + ,pew + ap)eM 

&t, 0 a~)cX" ; a(,*lIcw g%I)pd + a(,a+d 

0 ,.p),M + @4gwO qfbaIeA:t + a$mew 

where the coefficients f~cki,~ are expressed in a definite manner p. 43 in terms of the 
coefficients of matrix A. The expression tjeaA’b is written in the form 

++‘b = r&r) + ,+ (r~ra(,) + rbais) + *a$n) + e+“l (r)rC$) + *) + 4’)) 

where 
a:) = ,g*s) + b&r(,‘*s) (i _ i for k-f; i=i,2,3 for k=2,3) 

Equations (4.3) (4.4) have the form 
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‘l~~(kl+W(k)+qsa~)==O (k-22,3), ql’ + q-2 + qsa = 1 (6.2) 

If system (6.1) is completely controllable, then Eqs. (6.2) have only two solutions, 
q0 and - q”, and, moreover, 

= 

where ~~ = ,-@ ,$’ - .p”(“’ 

Ai I A 6 = 1,2,3) 

‘2 1 while AZ and As are obtained by a cyclic permutation 
of the upper index in the coefficients c+” of the expression for A,: A2 = A$ + A2 + 

+ A#. Thus, ?fevA’ b = A,c+~~/A ZE const. Therefore, for both classes or aclmissible 
controls we have 

d ll” = IV 1 Alay) 1 A-* 

Consequently, the controllability regions Qm (m = 1,~) are, just as in p, 41, sets of 
phase space points bounded by the two planes 

W AW + Ass + hys = & IV&a, 

On these planes there are points belonging to the regions Q” (m = 1,2). 
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CONTACT PROI)LEM FOR A SEMI-INFINITE CYUNDRICAL SHELL 
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The problem of the impression of pointed stamps along segments of the cross- 
sectional circle of a semi-infinite cylindrical shell supported freely at the end- 

face is considered. The edges of the stamps are absolutely stiff, of constant 

radius, and have no sharp angles. The influence of the shell endface on the 

character of the change in reaction of the stamps is investigated. The problem 

is solved on the basis of the shell theory equations constructed taking account of 

the Kirchoff- Love hypothesis. The friction between the shell surface and the 
stamp edges is not taken into account. 

1. Let us consider a semi-infinite cylindrical shell (Fig. l), freely supported on the 
endface 5 = 0 compressed along segments of the circle i = f. by identical stamps, 

where m denotes the number of stamps ((m = 2) in Fig. 1). 
We consider the stamp edges to be sharp and absolutely stiff so that the contact be- 

tween the shell and stamp is on the arc of a circle whose mannitude is characterized 

by the central angle 8 to be determined. We consider the curvature I/R1 of the stamp 

edges to be constant. Linear stress result- 

ants 4 (reactions) act from the stamp on 

the shell, and we consider them directed 

along the normal to the surface within the 

shell, without taking account of friction. 

Proceeding from the linear theory of thin 

shallow shells, we shall also assume that 
either the angle 8 is small, or the radius 

R, of the stamp edges differs slightly from 
the radius of the outer surface R, of the 

shell 
Fig. 

We obtain the initial equation of the 
problem from the condition of complete abutment of the shell to the stamp in the con- 
tact zone. which can be written as X, = i/R, - II kf,. where X, is the bending str- 
ain of the shell in the circumferential direction on the line of contact. Knowing the 
Green’s function Y for a semi-infinite shell freely supported on the endface E = 0 
the strain X, can be determined by formulas from [lj. Let us show that 


